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Temporal variation in natural selection is predicted to strongly im-
pact the evolution and demography of natural populations, with con-
sequences for the rate of adaptation, evolution of plasticity, and ex-
tinction risk. Most of the theory underlying these predictions as-
sumes a moving optimum phenotype, with predictions expressed in
terms of the temporal variance and autocorrelation of this optimum.
However, empirical studies seldom estimate patterns of fluctuations
of an optimum phenotype, precluding further progress in connect-
ing theory with observations. To bridge this gap, we assess the ev-
idence for temporal variation in selection on breeding date by mod-
elling a fitness function with a fluctuating optimum, across 39 popula-
tions of 21 wild animals, one of the largest compilations of long-term
datasets with individual measurements of trait and fitness compo-
nents. We find compelling evidence for fluctuations in the fitness
function, causing temporal variation in the magnitude, but not the
direction of selection. However, fluctuations of the optimum pheno-
type need not directly translate into variation in selection gradients,
because their impact can be buffered by partial tracking of the opti-
mum by the mean phenotype. Analysing individuals that reproduce
in consecutive years, we find that plastic changes track movements
of the optimum phenotype across years, especially in birds species,
reducing temporal variation in directional selection. This suggests
that phenological plasticity has evolved to cope with fluctuations in
the optimum, despite their currently modest contribution to variation
in selection.
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Introduction1

Natural environments vary on multiple timescales, with2

consequences for the ecology and evolution of species in3

the wild (1–6). Beyond directional trends (e.g. global warm-4

ing) and periodic cycles (diurnal, seasonal, pluriannual), most5

environmental variables exhibit random variation or noise 6

(4, 6), the magnitude and temporal pattern of which are cur- 7

rently being altered by human activities (7, 8). From an 8

evolutionary standpoint, these environmental fluctuations are 9

important because they can lead to temporal variation in nat- 10

ural selection. This can in turn maintain genetic polymor- 11

phism and phenotypic/genetic variance of quantitative traits 12

(9–12); select for traits that enhance evolvability (including 13

the properties of mutations (13) or recombination (14, 15)); 14

and favour the evolution of specific mechanisms to cope with 15

environmental fluctuations, from (trans-generational) pheno- 16
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typic plasticity to bet hedging (12, 16–18). A perpetually fluc-17

tuating environment also prevents natural populations from18

being perfectly adapted to their current conditions at any19

time, resulting in a “lag load” (19) that may impact popula-20

tion dynamics and extinction risk (20–23). Over macroevolu-21

tionary time, temporal variation in selection is also invoked to22

reconcile observations of rapid responses to selection with the23

relative paucity of long-term evolutionary change (6, 24–26).24

Most theoretical work on adaptation to fluctuating environ-25

ments rests on the classical framework of ‘moving optimum26

models’ (27), illustrated in Figure 1. In this model, directional27

selection on a quantitative trait is proportional to the devi-28

ation of the mean phenotype from an environment-specific29

optimum phenotype (Figure 1). Environmental fluctuations30

in the optimum phenotype can thus lead to temporal variation31

in directional selection, yet the two are not strictly equivalent,32

because changes in the expressed mean phenotype also affect33

temporal variation in deviations from the optimum, and thus34

in selection. A mean phenotype that closely tracks movements35

of the optimum (via evolution or phenotypic plasticity) can36

thus buffer the influence of a fluctuating optimum on selection37

(28, 29).38

The wealth of theoretical predictions on adaptation to fluc-39

tuating environments (11, 12, 16–18, 20–22, 25) has rarely40

been explicitly compared to empirical estimates, especially41

for polygenic, quantitative traits, which form the bulk of eco-42

logically important traits such as body size, behaviour or phe-43

nology (see Ref (6) for a review on fluctuating selection on44

discrete traits or major genes). Recent meta-analyses of tem-45

poral variation in selection on quantitative traits (30, 31) have46

shown that - when carefully restricted to datasets for which47

measurement error was reported (31) - the direction of selec-48

tion was largely consistent across years, despite evidence for49

some temporal variation in magnitude of the gradients (31).50

However, neither of these meta-analyses (30, 31) allowed di-51

rect connection with theory, because most theoretical predic-52

tions are expressed in terms of the variance and autocorrela-53

tion in the optimum (11, 12, 16–18, 20–22, 25), which cannot54

be recovered directly from variation in selection gradients (as55

shown by ref. 29). In addition, these meta-analyses (30, 31)56

could not ascribe temporal variation in selection gradients to57

movements of the fitness function versus changes in the phe-58

notype distribution (as illustrated in Figure 1).59

Here, we investigate the extent of temporal variation in60

selection on breeding date. Breeding date can easily be com-61

pared across species, and is likely to be under selection for an62

optimum phenotype, because reproducing either too early or63

too late should limit reproductive success (including offspring64

survival), and possibly survival of the parents. Changes in65

phenology (the seasonal timing of life history events) are a66

predominant phenotypic response to climate change (32–35).67

Thus, understanding natural selection on phenology is crucial68

for many eco-evolutionary projections of the effects of current69

anthropogenic climate change on wild populations (36). In ad-70

dition, most phenological traits (including breeding time) are71

plastic in response to environmental variables such as temper-72

ature, and this plasticity is thought to have evolved to buffer73

the ecological consequences of a moving optimum in a fluctu-74

ating environment (12, 16, 17, 37).75

Instead of performing a meta-analysis of published selec-76

tion estimates, we assembled a new database combining 3977

long-term datasets from natural populations (13 bird and 8 78

mammal species, see Table S1), over periods spanning from 9 79

to 63 years. Although parts of these datasets have been pub- 80

lished previously, we obtained up-to-date versions by directly 81

contacting the PIs. This has allowed us to analyse temporal 82

variation in natural selection using the common framework il- 83

lustrated in Figure 1, using individual measurements of traits 84

and fitness components. Based on key elements of the mov- 85

ing optimum theory of adaptation to a changing environment 86

(27), we inquired: (i) Is there support for an optimum phe- 87

notype? (ii) Is there support for a temporally fluctuating 88

fitness function? (iii) Does fluctuation of the fitness func- 89

tion translate into temporal variation in the direction and/or 90

magnitude of selection? (iv) What is the predictability (auto- 91

correlation) of selection? (v) To what extent is the effect of a 92

moving optimum buffered by adaptive tracking by the mean 93

phenotype, notably through phenotypic plasticity? While 94

moving optimum models have previously been estimated in 95

a couple of populations (38, 39), this is the first time that 96

such a method has been applied systematically across a large 97

number of populations and systems. This enabled us to re- 98

port wild-population meta-estimates (robust overall estima- 99

tors from “meta-analysis” models) of key parameters from 100

the theory of selection in a variable environment. 101

Results 102

Selection model Consistent with moving optimum models 103

(27), we assumed that the relationship between breeding date 104

and the fitness component exerting selection on it (annual re- 105

productive success) involves a single fitness peak, with an op- 106

timum phenotype that fluctuates with the environment (Fig- 107

ure 1). Denoting as W (z) the expected fitness component for 108

an individual with breeding date z, we thus have 109

W (z) = Wmax exp
(

− (z − θ)2

2ω2

)
, [1] 110

where θ is the optimum breeding date, for which the expected 111

fitness component is Wmax, and ω describes the width of the 112

fitness function. The fitness function in Equation 1, being 113

quadratic on the log scale (38, 40), uses as many parame- 114

ters as the quadratic approximation often used in selection 115

analysis (30, 41–43), but is more realistic, notably because 116

it precludes negative expected fitness (38, 40). This makes 117

it a reasonable approximation for any fitness peak with an 118

optimum (hence its prevalence in theoretical work (27, 44)), 119

and a biologically meaningful benchmark to draw generaliza- 120

tions about temporal variation in selection across populations 121

and species, even if it does perfectly match the actual fitness 122

function for specific datasets (just like the effective population 123

size allow comparing levels of drift even for non-Wright-Fisher 124

populations). 125

In such a model, and assuming a normally distributed trait, 126

the directional selection gradient measuring the strength of 127

directional selection is (44) 128

β = θ − z̄

ω2 + 1 , [2] 129

where z̄ is the mean phenotype. Note that trait values are 130

here divided by their standard deviation σz, so β corresponds 131

to a standardised, dimensionless gradient (41), also described 132

as selection intensity (θ and ω are similarly standardised; for 133
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Phenotypic distribution
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Year t+ 1

Year t+ 2

Fluctuations of the
optimum θ

between years

Fig. 1. Selection in the moving optimum
model. A: A fitness peak with an optimum
(black curve), is modeled as a Gaussian fit-
ness function following classical theory of adap-
tation. The maximum absolute fitness Wmax

is reached at the optimal trait value θ, and
the width of the fitness peak is parameterised
by ω. A normal distribution of phenotypes is
also shown underneath in green shading (note
this distribution has its own scale of probabil-
ity density, different from the fitness scale on
the Y axis, but we omit it for simplicity). The
strength of directional selection is quantified by
the linear selection gradient beta, which mea-
sures the mean local slope of the relative fit-
ness function, and is proportional to the slope
of the red straight line. In this model of Gaus-
sian fitness peak, β is proportional to the devi-
ation of the mean phenotype from the optimum,
and inversely proportional to ω2 + 1 (for SD-
standardised traits), such that narrower fitness
peaks cause stronger directional selection over-
all. B: Temporal changes in the optimum θ and
in the mean phenotype (mode of the green dis-
tribution) jointly translate into changes in selec-
tion gradients β. Note that while the maximum
fitness Wmax remains constant in this figure, it
is allowed to vary in our models.

a non-standardised trait, 1 should be replaced by σ2
z in Equa-134

tion 2). Equation 2 shows that β is proportional to the de-135

viation of the mean phenotype from the optimum, as illus-136

trated in Figure 1. Fluctuations in directional selection (β)137

can thus result from fluctuations in the optimum phenotype138

(θ), fluctuations in the mean phenotype (z̄), or both. Fur-139

thermore, fluctuations in the optimum might result in little140

to no fluctuations in directional selection, if the mean phe-141

notype appropriately tracks changes in the optimum. For a142

given deviation from the optimum, β is larger if the fitness143

peak is narrower, leading to larger values of 1/(ω2 + 1). Note144

that the strength of stabilizing selection reducing phenotypic145

variance in any generation is also proportional to 1/(ω2 + 1)146

(or 1/(ω2 + σ2
z) for an unstandardised trait), regardless of the147

deviation of the mean phenotype from the optimum (45, 46),148

such that the trait can be under both stabilizing and direc-149

tional selection.150

We are interested in distinguishing temporal variation in151

selection caused by fluctuation in the fitness function from152

that caused by changes in the mean phenotype (Figure 1). To153

this aim, we directly estimated fluctuations of the fitness peak154

via a random effect for year t on the optimum θt in a mixed155

model, which prevents conflating measurement error with the156

actual variance in selection (38, 39). We also investigated the157

temporal predictability of fluctuations in the optimum, by op-158

tionally allowing for temporal autocorrelation in the optimum,159

in the form of a first-order autoregressive process. As alterna-160

tive models, we also considered fitness functions without an161

optimum, namely a monotonic fitness function where the di-162

rection of selection does not change with the mean phenotype163

in the population (but can still change with the environment),164

and a flat fitness function causing no selection. The models165

are summarised in Table 1.166

Fluctuation of the fitness function is predominant We first inves-167

tigated the support for fluctuating fitness functions, by using168

an information criteria akin to AIC or WAIC, the Bayesian 169

Leave-One-Out Information Criterion (47) (LOOIC). More 170

specifically, we computed “weights of evidence” inspired by 171

Akaike weights used in model averaging (48) (and summing 172

to 1 across all compared models), which we used to compare 173

the statistical support for different features of selection across 174

datasets. The results of model selection for each dataset ap- 175

pear in Table S2. We found little support for models with- 176

out selection (flat fitness function, 3.4% and 8%, respectively 177

for birds and mammals). The statistical support for an opti- 178

mum was dominant (optimum vs directional models: 51.7% vs 179

44.9% for birds and 62.4% vs 29.6% for mammals). Similarly, 180

the support for fluctuating fitness functions was also dominant 181

(fluctuating vs constant models: 77.7% vs 22.3% for birds and 182

65.6% vs 34.4% for mammals). Those results were qualita- 183

tively unchanged when considering a completely balanced set- 184

ting using ConstDir/ConstOpt models as the sole contestants 185

for “no fluctuation” and FluctCorrDir/FluctCorrOpt as the 186

sole contestants for “fluctuating fitness functions”. For some 187

datasets, especially the smaller ones and/or those where fit- 188

ness was analysed as a binary trait, there was considerable 189

uncertainty regarding the best model(s), even when there 190

was clear evidence for fluctuating fitness functions. For two 191

datasets, the mountain goat (Oreamnos americanus, Oam) 192

and the red-winged fairy-wren (Malurus elegans, Mel), the 193

support for an absence of selection was dominant (weight 194

above 0.5), so we removed them from subsequent analyses 195

to avoid commenting on spurious signals. In the rest of the 196

paper, and for the sake of simplicity, we focus on the (maxi- 197

mal) model with an auto-correlated fluctuating optimum, un- 198

less otherwise noted. However, we also discuss the support 199

for different aspects of the model when commenting on the 200

results. 201

The optimum fluctuates differently between birds and mammals 202

In datasets with predominant support for an optimum (rel- 203

de Villemereuil et al. PNAS | September 30, 2020 | vol. XXX | no. XX | 3
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Table 1. Statistical models considered, their characteristics and relative statistical support for each taxonomic level (birds, 31 datasets, or
mammals, 8 datasets, or all taxa together, 39 datasets). “NoSel” corresponds to a flat fitness function, i.e. no selection. “Const” models
have a constant fitness function, “Fluct” models have fluctuating optimum without correlation between years, while “FluctCorr” models have
auto-correlated fluctuating optimum. In all models, the intercept was allowed to vary from year to year. Regarding the shape, “Dir” models
correspond to a monotonic (directional) function, while “Opt” models include an optimum as described in Figure 1 and Equation 1. Relative
statistical support is the average of the evidence weights (computed from Leave-One-Out information criterion, LOOIC(47), following (48))
over the total number of tested models (note that relative statistical supports sum up to 1).

Statistical Support
ID Shape Fluctuations Autocorrelation Bird Mammal Total

NoSel Flat 8 8 0.034 0.08 0.043
ConstDir Monotonic 8 8 0.12 0.082 0.112

ConstOpt Gaussian 8 8 0.069 0.182 0.092
FluctDir Monotonic 4 8 0.188 0.104 0.171

FluctOpt Gaussian 4 8 0.194 0.211 0.198
FluctCorrDir Monotonic 4 4 0.141 0.11 0.135

FluctCorrOpt Gaussian 4 4 0.254 0.231 0.249

ative support >0.5 among models with selection), the peak204

width ω was typically large (Figure S1 and Figure S2), with a205

meta-estimate of 6.22 (95% higher posterior density credible206

interval [3.2, 9.4]) for birds and of 4.94 ([1.2, 9.2]) for mam-207

mals. Such values (in units of within-year phenotypic SD)208

correspond to weak stabilising selection (fitness peak broader209

than phenotype distribution), consistent with previous esti-210

mates from the literature, and with values commonly used211

in theory (42, 43, 49). A few notable exceptions had a nar-212

row fitness peak with a low value of ω (e.g. an Alpine swift213

dataset, Tachymarptis melba, Tme1; the eastern grey kanga-214

roo, Macropus giganteus, Mgi; the oystercatcher, Haematopus215

ostralegus, Hos; and the reindeer, Rangifer tarandus, Rta).216

The lowest ω was found in the hihi (Notiomystis cincta, Nci,217

1.77 [1.56, 2.03]).218

The mean location of the optimum θt was often inferred to219

be significantly negative, implying that the average optimal220

timing was usually earlier than the average mean breeding221

date across years (Figure 2). In the three cases when a point222

estimate was inferred to be positive, the sign of the estimate223

was uncertain (i.e. 95% credible intervals overlap zero), de-224

spite strong support for a model with an optimum for one225

of them (a blue tit, Cyanistes caeruleus, Cca10). The meta-226

estimate for birds was different from zero (−3.7, [−7.5, −0.7]),227

while that for mammals was not (−1.75, [−6.4, 3.0], Figure 2).228

The magnitude of fluctuations in the optimum differed229

strongly between datasets, with five datasets (out of twenty230

with predominant support for an optimum) displaying low231

variation (σθ < 0.5, Figure 2) and five inferred to have a large232

standard deviation (σθ > 3, Figure 2). Note that the lat-233

ter also had E(θ) not significantly different from zero, which234

could be linked to a greater uncertainty in the estimation of235

E(θ) in the context of high levels of fluctuations. The meta-236

estimate for σθ was higher for mammals (3.14, [0.34, 6.7]) than237

for birds (1.89, [0.33, 4.1], Figure 2). Interestingly, there was238

no obvious link between statistical support for fluctuations239

and the inferred standard deviation of the optimum (orange240

scale in Figure 2). Autocorrelation of the optimum was dif-241

ficult to estimate, resulting in large 95% credible intervals242

overlapping zero most of the time (φ in the left panel of243

Figure S1 and Figure S2). Still, six datasets had a signif-244

icant estimate of temporal autocorrelation in the optimum,245

of which five were positive (blue tits, Cca7: 0.59[0.31, 0.84],246

CCa9: 0.42 [5.9 × 10−4, 0.80], Cca10: 0.94 [0.84, 0.99] and 247

great tits, Parus major, Pma4: 0.74 [0.42, 0.97] and Pma8: 248

0.83 [0.64, 0.97], all from the Netherlands except Pma8). The 249

only dataset with a significantly negative temporal autocor- 250

relation was the hihi (Nci, −0.59[−0.98, −0.097]). Overall, 251

these differences between datasets resulted in a wide varia- 252

tion across datasets of the behaviour of the fitness function 253

over years (Figure S3). 254

Selection varies in strength, but not in direction The inferred se- 255

lection gradients βt were consistent between models with and 256

without an optimum (computed following (40, 50)) for the 257

same dataset (Figure S4), so we hereafter only focus on re- 258

sults from the model with an optimum to avoid over-fitting 259

resulting from model selection. 260

The temporal mean of the standardised selection gradient 261

E(β) was significantly negative (selection for earlier breed- 262

ing) for most bird datasets (only three great tit datasets, 263

Pma2, Pma3 and Pma5 were not significantly negative; and 264

one, a blue tit dataset, Cca10, was significantly positive, Fig- 265

ure 2). On the contrary, the temporal mean gradients for 266

mammals were mostly not significant (with two exceptions, 267

the reindeer, Rta and the Columbian ground squirrel, Urocitel- 268

lus columbianus, Uco, Figure 2). The meta-estimates for the 269

temporal mean of standardised gradient reflected these indi- 270

vidual results, being significantly negative for birds (−0.17, 271

[−0.26, −0.077]) but not for mammals (−0.087, [−0.22, 0.032], 272

Figure 2). Six datasets (the European oystercatcher, Hos; 273

eastern grey kangaroo, Mgi; hihi, Nci; the reindeer, Rta; and 274

two Alpine swift datasets, Tme1 and Tme2) had stronger 275

mean selection gradients than the others (Figure 2). Interest- 276

ingly, large mean selection gradients over years (large absolute 277

values of E(β)) were sometimes associated with predominant 278

support for an optimum, and were then attributable to a nar- 279

row fitness peak (small ω) rather than to a large temporal 280

mean deviation from the optimum (large E(θ), Figure S5). 281

The magnitude of variation in directional selection, as 282

quantified by σβ , was highly different between datasets, al- 283

though less so than for σθ. Overall, variation in standardised 284

gradients ranged from very small to large (0.004 to 0.38 for 285

the posterior medians of σβ), with meta-estimates at 0.047 286

([0.018, 0.11]) for birds and 0.15 ([0.056, 0.36]) for mammals 287

(Figure 2). Despite such possibly large variation, there was 288

very little evidence for fluctuations in the sign of selection gra- 289
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Fig. 2. Strength and variation of selection. The average location of the optimum E(θ) (top left, where 0 represents the mean breeding time across years) and selection
gradients E(β) (bottom left) are shown, together with their temporal standard deviations σθ (top right) and σβ (bottom right), for all datasets (points: posterior median, lines:
95% credible intervals). Meta-estimators for birds and mammals (computed on datasets with majority optimum support for the top panels) are available at the bottom of each
panel (in green, with squares and thicker lines). Note that the phenotypes were mean-centred and scaled to a within-year variance of 1, so θ and β are dimensionless. The
evidence weight for an optimum (vs directional models, excluding NoSel models) phenotype is indicated by a colour on the blue scale on the top-left panel, while the orange
scale on the right panels represents the evidence weight for fluctuating selection (more saturated colours for higher values, i.e. more support for the estimate). Datasets for
which the optimum support was in minority (< 0.5) compared to directional models are greyed out in the top panels. Estimates computed from FluctCorrOpt models. The
dataset codes are explained in Table S1 and the values are provided in a CSV file on the GitHub repository.

dients (e.g. negative gradients becoming positive, Figure S6,290

49% of datasets with strong support for no change of sign291

at all), and such fluctuations were more frequent (posterior292

median above 30%) for datasets with an especially small av-293

erage gradient (−0.04 < E(β) < 0.02). Again, there was no294

link between statistical support in favour of fluctuations and295

the inferred σβ (Figure 2, levels of orange), which suggests296

that moderate variation in selection could still be strongly297

supported by the data. 298

Plasticity causes adaptive tracking of the optimum phenotype To 299

better understand the causes of variation in directional selec- 300

tion, we disentangled the relative contributions of fluctuations 301

in the optimum phenotype vs in the mean phenotype (Fig- 302

ure 1). From Equation 2, the variance of selection gradients 303
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Fig. 3. Phenotypic tracking of fluctuations in the optimum. A: Standard deviation of the selection gradient βt (dots: actual values σβ ; crosses: computation assuming
no tracking, i.e. ρz̄,θ = 0 in Equation 3) against the standard deviation expected when using optimum fluctuations only (i.e. σz̄ = 0 in Equation 3). Arrows show the
direction of the change when accounting for tracking, and the red scale indicates the actual value of ρ2

z̄,θ . Note that long arrows tend to be red, while short arrows tend to be
grey. For datasets with minority support for an optimum compared to the directional models, only greyed-out dots are displayed. The identity line is depicted in grey. B: For
the 15 datasets with predominant support for an optimum and repeated measures, posterior distributions (coming from propagated Bayesian uncertainty) of the correlation
coefficients between shifts in the optimum and shifts in the average phenology for individuals measured in two consecutive years. In light red: the distribution does not contain
zero in the 95% highest density posterior interval. The dataset codes are explained in Table S1.

is304

σ2
β = σ2

θ + σ2
z̄ − 2ρz̄,θσθσz̄

(ω2 + 1) . [3]305

Equation 3 shows that the temporal variance in directional se-306

lection gradients σ2
β results not only from fluctuations in the307

optimum, with variance σ2
θ , but also from year-to-year fluc-308

tuations in the annual mean phenotype z̄, with variance σ2
z̄ .309

Fluctuations in z̄t are explained by a combination of pheno-310

typic plasticity (adaptive or not), responses to selection, and311

drift (neglecting the influence of dispersal). In addition, σ2
β312

depends on the correlation ρz̄,θ between the mean phenotype313

and the optimum (hereafter referred to as phenotypic track-314

ing of the optimum). A positive ρz̄,θ is indicative of adaptive315

change in the mean phenotype, as produced by adaptive phe-316

notypic plasticity and/or genetic responses to natural selec-317

tion.318

The dots in Figure 3A show the estimated standard devia-319

tions of selection gradients σβ , plotted against their hypothet-320

ical values if we solely include fluctuations in the optimum, by321

assuming σz̄ = 0 in the numerator of Equation 3. Even for322

datasets with moderate or weak support for an optimum (grey323

dots), fluctuations of the optimum are a very good predictor324

of variation in selection gradients, as the points are close to325

the identity line (in light grey, which corresponds to the as-326

sumption that all variance in β originates from variance in the327

optimum θ). In cases where the optimum causes little vari- 328

ation in β (bottom left), the actual σβ was inflated relative 329

to this identity line. This inflation originates from mild fluc- 330

tuations in the mean phenotype (with magnitude σz̄), which 331

become non-negligible relative to small values of σθ, and there- 332

fore contribute to variation in deviations from the optimum. 333

The crosses in Figure 3A show, for datasets with predominant 334

support for an optimum, the hypothetical standard deviations 335

of selection gradients in the absence of phenotypic tracking of 336

the optimum, that is, keeping only σ2
z̄ and σ2

θ in the numera- 337

tor of Equation 3, while setting ρz̄,θ = 0. The arrows connect- 338

ing crosses to dots thus represent the influence of phenotypic 339

tracking on variation in selection gradients: the longer the 340

arrow, the more ρz̄,θ becomes important to understand σβ 341

(Equation 3). These arrows are pointing down in most cases, 342

indicating that realised σβ were smaller than expected when 343

assuming independent fluctuations in the optimum and mean 344

phenotype. The length of the downward facing arrows can 345

thus be interpreted as the degree to which temporal variation 346

in selection was reduced by phenotypic tracking of the opti- 347

mum causing a positive ρz̄,θ (colour of the arrows in Figure 3). 348

An obvious candidate mechanism for phenotypic tracking 349

of the optimum is adaptive phenotypic plasticity (51, 52). Us- 350

ing only individuals with repeated measures in subsequent 351

years (on a subset of 15 datasets with both predominant sup- 352
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port for an optimum and sufficient repeated-individual data),353

we were able to distinguish plastic from genetic changes in354

mean breeding date. We detected plastic phenotypic track-355

ing of fluctuations in the optimum (Figure 3B), especially in356

four datasets for which the correlation between plastic phe-357

notypic change and change in the optimum was significantly358

positive (in red in Figure 3B; note that Cca7 and Pma6 are359

both located in Hoge Veluwe in the Netherlands). The meta-360

estimate of the correlation across the 11 bird datasets was361

relatively strong and significant for birds (0.25 [0.072, 0.44],362

p = 0.0095), contrary to the meta-estimate across the 4 mam-363

mal datasets (0.13 [−0.17, 0.43]; p = 0.35). Note however that364

American red squirrel (Tamiasciurus hudsonicus, Thu) had a365

large correlation (0.53), which despite being non-significant366

using sample-based p-value (p = 0.0675), had a 95% higher367

posterior density interval non-overlapping zero ([0.056, 0.78]).368

These results suggest that phenotypic plasticity indeed plays369

an important role in tracking the optimum phenotype, at least370

in bird species.371

Discussion372

We investigated fluctuations of fitness functions and tempo-373

ral variation in selection, as estimated by the relationship be-374

tween individual breeding date and yearly reproductive out-375

put. Our unique database, comprising 39 datasets of wild376

populations of birds and mammals, allowed for an unprece-377

dented estimation of parameters that appear in a wealth of378

theoretical predictions for adaptation to changing environ-379

ments (11, 12, 16–18, 20–22, 25), answering our key questions380

laid out in the Introduction. In summary, we found predom-381

inant support for (i) models with a fitness peak against the382

alternatives and (ii) fluctuations of the fitness function over383

time. This translated into (iii) variation in the strength but384

not direction of selection, with a strong dependence on taxa385

(mammal/bird), species and population. We found (iv) un-386

certainty in the estimation of autocorrelation in the optimum387

and directional selection, owing to the high data requirements388

of these estimates. But we showed (v) substantial plastic phe-389

notypic tracking of the optimum phenotype between years for390

bird species. Beyond our case study on reproductive phenol-391

ogy, the range of parameters we estimated here can serve as392

a much-needed benchmark of biologically realistic values for393

theoretical studies of adaptation to changing and fluctuating394

environments.395

Our results corroborate a consensus in the bird literature396

that natural selection on phenology tends to favour earlier397

breeding (35), with a significantly negative meta-estimate for398

the directional selection gradients (Figure 2). This pattern,399

which has been documented before (35, 39, 51, 53–60), was400

however not found in mammals overall, despite two individ-401

ually significant datasets (Figure 2), previously shown to be402

under such negative selection (61, 62). We also found sup-403

port for the presence of an optimum phenotype (total statis-404

tical support of 54% for models with an optimum, Table 1),405

with slightly more support in mammals, perhaps in relation406

to the difference in significance of the selection gradient above.407

Support for an optimum is consistent with the intuition that408

breeding too early or too late should be detrimental in the409

temperate locations constituting most of our database, char-410

acterised by marked seasonality with stressful conditions in411

winter and summer (61, 62). This raises the question, espe-412

cially for birds: why are breeding dates in these populations 413

not closer to their expected evolutionary equilibrium, instead 414

displaying consistent deviations from their optimum? Among 415

several possible explanations for this “paradox of stasis” (63), 416

a particularly relevant one for breeding time involves body 417

condition (64). Non-heritable aspects of physiological condi- 418

tion (e.g. nutritional status) are known to influence both the 419

timing of breeding and reproductive output, such that individ- 420

uals in better condition tend to breed earlier and have more 421

offspring (64). This causes the optimal breeding date to be 422

displaced to a later time than the optimum set by the exter- 423

nal environment (e.g. date of peak in resource abundance), 424

such that apparent directional selection - mediated by con- 425

dition - persists even at evolutionary equilibrium (64). An- 426

other mechanism with a similar outcome is when competition 427

for breeding territories produces frequency-dependent selec- 428

tion favoring individuals that breed earlier than others in the 429

population, regardless of the actual date (65). In that light, 430

the difference between birds and mammals, in both the signifi- 431

cance of mean selection gradients and support for an optimum, 432

could stem from differences in how inter-individual competi- 433

tion is happening over time, with possibly shorter periods of 434

stronger competition when birds feed the chicks. Note that 435

temporal variation in condition, or in its relationship with 436

breeding date and reproductive success, could also contribute 437

to the estimated variation in selection to some extent. A 438

promising approach for partitioning out this effect would be 439

to include a proxy for physiological condition in a multivari- 440

ate selection analysis. More broadly speaking, trade-offs with 441

other components of fitness not included in our estimate of se- 442

lection, such as maternal survival or future performance (66), 443

could also affect our inference of natural selection and its vari- 444

ation. 445

Our analysis indicates that the strength of natural selec- 446

tion on a phenological trait, one of the best studied phenotypic 447

categories in evolutionary ecology, varies in time in most in- 448

vestigated wild populations of birds and mammals (Figure 2). 449

Models including variation in the strength of selection and/or 450

fluctuations of an optimum phenotype had statistical support 451

above 75% (all taxa together, Table 1), and the standard 452

deviation of standardised selection gradients was relatively 453

large, up to 0.38. However, we found little variation in the 454

direction of selection, consistent with findings of a previous 455

study based on a meta-analysis (31). Nevertheless, theoreti- 456

cal work has shown that randomly varying selection can have 457

substantial eco-evolutionary impacts, even when the direc- 458

tion of selection does not fluctuate. Indeed, environmental 459

stochasticity causes randomness in evolutionary trajectories, 460

increasing both the average magnitude and stochastic vari- 461

ance of phenotypic mismatches with optimum, in turn lead- 462

ing to higher extinction probability in a novel or changing 463

environment (20–22). These studies have shown that the de- 464

mographic load (expressed as a reduction in log mean fitness) 465

caused by a fluctuating optimum is proportional to σ2
θ

2(ω2+1) 466

(for a SD-standardised trait), which we here estimate as 0.199 467

([1.6 × 10−5, 0.99]) for birds and 0.401 ([0.0067, 1.6]) for mam- 468

mals, equivalent to a 18% (respectively 33%) decrease in mean 469

fitness. 470

Environmental fluctuations might not result in detectable 471

variation in natural selection if populations track their fluc- 472

tuating optimum over time. In datasets for which an opti- 473
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mum was well supported, we found that fluctuations in the474

optimum strongly influenced temporal variation in selection475

gradients (Figure 3A), but that the latter was considerably at-476

tenuated by phenotypic tracking of the optimum. We demon-477

strated that this phenotypic tracking is largely caused by478

plastic responses of individuals that reproduce in consecutive479

years (Figure 3B), with four datasets showing a significant480

correlation (from 0.36 to 0.78) between changes in the opti-481

mum and plastic change in the mean phenotype. A significant482

meta-estimate of this correlation was found for birds (no per-483

fect tracking —correlation of 1— was detected, as would be484

expected(67)). The meta-estimate was not significant for the485

tested mammal datasets, which were mainly ungulates. Al-486

though difficult to generalise based on only four datasets, it487

is possible that because in mammals gestation periods are of-488

ten longer than for birds and annual fitness is often measured489

based on offspring recruitment (Table S1), tracking selection490

through plasticity might be particularly challenging for mam-491

mals. An exception to this trend was the only non-ungulate492

(American red squirrel, Thu), for which tracking was partially493

supported, consistent with previous findings in this species494

(23). It is possible that the natural history of this species495

—food hoarding (68) and year-round social cues of density496

(69)— provides access to cues of upcoming natural selection497

that are typically not available to other species.498

Even when plastic phenotypic tracking was strong, the499

mean breeding time was consistently late relative to the opti-500

mum, thus questioning the adaptiveness of plasticity in these501

populations. Given that environmental cues strongly associ-502

ated with phenological plasticity have been detected in all of503

the populations with substantial support for plastic tracking504

(60, 70–72), it is likely that such cues allow tracking of the505

optimum, but are somehow biased toward later phenology. A506

possible reason may be that the mean phenology is lagging be-507

hind an advancing optimum caused by warming climate, and508

that the reaction norm for plasticity is shallower than that509

for the optimum (67, 73). For example, the significant pos-510

itive autocorrelation signal observed in five of our datasets511

can be explained by a significant trend over years (without512

much impact on the estimate of σθ for all five, but resulting513

in non-significant autocorrelation in two cases, see Figure S7).514

Another possibility is that cue reliability has been reduced515

under climate change and habitat degradation, causing orig-516

inally adaptive phenotypic plasticity to become less suitable517

for tracking the optimum phenotype. This scenario, which is518

predicted to cause evolution of the environmental cues used519

by organisms to plastically adjust their phenotypes (74), re-520

mains to be investigated further.521
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Material & Methods 561

Data collection. We assembled a collection of surveys of wild 562

populations for which episodes of fertility selection on repro- 563

ductive phenology were monitored over multiple years, allow- 564

ing estimation of parameters of fluctuating selection. To enter 565

the database, a dataset had to include information on both 566

(i) a trait relating to reproductive phenology, such as lay or 567

parturition date; and (ii) a measure of fitness for this selec- 568

tion episode, such as number of viable offspring or survival of 569

offspring, which quantify the output of a reproductive event. 570

We also only retained datasets with a sufficiently large num- 571

ber of years (at least nine years). The final collected database 572

includes Nd = 39 datasets, with 21 different species (13 birds 573

and 8 mammals) and 32 different locations. The number of 574

years varied between 9 and 63 (average 33.2) and the average 575

number of females breeding per year between 15.7 and 236.3 576

(average 64.8) for a total of between 353 and 12357 breed- 577

ing events (average 1880). More detailed information on each 578

dataset is available in Table S1. 579

Data formatting. All datasets were formatted consistently. In 580

case of multiple breeding events per breeding season, we used 581

the date of the first event as the phenological trait (onset of 582

breeding); otherwise, we used the start date of the unique 583

breeding event. For each dataset, this phenological trait was 584

centred to the overall mean across years for the dataset and 585

standardised by dividing by the average within-year pheno- 586

typic standard deviation, also for the dataset. As a measure 587

of reproductive output for each female and breeding event, we 588

used the number of fledglings summed over the entire breeding 589

season for bird species, and the number of offspring at wean- 590

ing, or alive after a year, for mammals with large numbers of 591

offspring. For mammals with one (occasionally two) offspring 592
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per breeding event, we used the survival to weaning or to a593

year after birth. Whether a data set was using weaning or the594

one-year threshold as the reference was decided in agreement595

with the contributors and is shown in Table S1. All records596

with a missing value for either the phenological trait or the597

fitness measure were removed. A dummy ID was assigned for598

each record missing a female ID.599

Statistical analyses.600

Fitness function Expanding on (38), we contrasted three601

shapes of the fitness function relating the phenological trait602

to fitness in each breeding season: (i) a flat function corre-603

sponding to no selection (“NoSel” model); (ii) a monotonic604

function for which the direction of selection is independent605

of the mean phenotype (“Dir” models); and (iii) a Gaussian606

optimum (“Opt” models). Denoting as W (z) the expected607

number of offspring of an individual with phenotype z, these608

fitness functions took the following mathematical forms when609

fitness consisted of a count of offspring:610

(i) W (z) = exp(a), [4a]611

612

(ii) W (z) = exp (a + bz) , [4b]613

614

(iii) W (z) = Wmax exp
(

− (z − θ)2

2ω2

)
. [4c]615

Note that for the exponential fitness function in (ii), the di-616

rectional selection gradient is the parameter b (40), regardless617

of the phenotype distribution. For the Gaussian fitness peak618

in (iii), the parameter ω describes the width of the fitness619

function, with smaller ω causing stronger stabilising selection,620

while θ is the optimal timing for reproduction, and directional621

selection depends on the mean deviation from the optimum,622

as illustrated in Figure 1. Since the phenological traits were623

standardised, θ and ω are in units of within-year phenotypic624

standard deviation. When fitness measures consisted of sur-625

vival of one offspring, we replaced the exponential in (i) and626

(ii) with an inverse-logit, while for (iii) we retained the Gaus-627

sian fitness peak in Equation 4c, but obtained Wmax ∈ [0, 1]628

from a continuous latent scale on real numbers via a logit link.629

The realised reproductive output was then obtained from this630

expected fitness using a Poisson or binomial distribution, de-631

pending on whether the fitness measures were a number or632

individual survival of offspring, respectively. The Poisson dis-633

tribution could further be zero-truncated or zero-inflated, if634

posterior predictive checks on a Poisson model were showing635

a bad fit for the zero category. Furthermore, we included fe-636

male IDs as a random effect on the intercept (a in (i) and (ii)637

and Wmax in (iii)), to account for repeated measurements.638

Models of fluctuating selection To investigate temporally vari-639

able selection (“Fluct” models throughout, e.g. “FluctOpt”640

and “FluctDir”), we allowed the fitness function to vary from641

year to year, using random effects for time in the relevant642

parameters (see below), as in (38, 39). For models with an643

optimum, a random effect for year was included for both Wmax644

and θ (on the log or logit scale for Wmax). We did not allow645

ω to vary between years, because it is a difficult parameter646

to infer, and within-year sample sizes were likely not enough647

to bear with its estimation for each year. We can thus think648

of our estimates as fluctuations of an effective optimum with649

constant width, even though the true optimum may vary in650

width to some extent. For models without an optimum, we 651

used random effects for years on the a and b parameters. The 652

random effects (following a Gaussian distribution) allowed us 653

to infer the standard deviation over years of θ and Wmax (on 654

the log or logit scale), σθ and σWmax , and of a and b, σa and 655

σb. Models with only variation in the intercept (Wmax or a) 656

are referred to as “Const” models, because although the func- 657

tion varies in intercept from year to year, the actual selection 658

process is assumed constant. Temporal autocorrelation, in 659

the form of a first-order auto-regressive process (AR1) with 660

slope φ, was optionally introduced in the random effects for 661

the θ and b parameters (referred to as “FluctCorr” models). 662

The combination of fitness functions and patterns of fluc- 663

tuations led to seven alternative parameterisations, which are 664

summarised in Table 1. To compare the magnitude of se- 665

lection and its fluctuation across models with alternative fit- 666

ness functions, we computed the selection gradients βt (esti- 667

mated for each year t if fluctuations are assumed) from both 668

kinds of statistical models with selection. For models with 669

monotonic directional selection (ConstDir, FluctDir, Fluct- 670

CorrDir), the selection gradient is simply the slope of the lin- 671

ear model βt = bt when using the log-link, and was computed 672

for logit-link as: 673

βt = bt

(
1 − W 2

t

Wt

)
, [5] 674

where Wt and W 2
t are respectively the population mean fit- 675

ness and mean squared fitness, computed over all available 676

individuals each year, adapted from (50). For models includ- 677

ing an optimum, the directional selection gradient in year t 678

is as in Equation 2. Note that with an optimum, variation in 679

directional selection gradients must account for year-to-year 680

variation in the mean phenotype z̄t (Figure 1). 681

Prior distributions Diffuse, zero-centered normal distribu- 682

tions (with variance 106) were chosen as priors for log(Wmax), 683

θ, a and b, while for logit(Wmax) in the binomial model, we 684

used a weakly informative normal distribution with mean 0 685

and standard deviation of 1. In contrast, we used a slightly in- 686

formed prior for ω, because we do not expect the fitness peak 687

to be narrow relative to the phenotypic standard deviation, 688

since this would lead to extremely strong stabilising selection, 689

with most phenotypes having a fitness near zero, except in the 690

immediate vicinity of the optimal timing for reproduction. We 691

thus used a Gamma distribution parameterised so that 95% 692

of the prior distribution lies between 1 and 10 standard de- 693

viations of the trait (standardised to 1), leading to a shape 694

parameter of 3.36 and a rate parameter of 0.78. The vari- 695

ances of the random effects added to log(Wmax), a and b were 696

assigned a weakly informative standard normal distribution 697

prior, while the prior variance of σθ was specified indirectly 698

via an independent exponential prior of rate 1 on c = σθ/ω. 699

Finally, the zero-inflation probability pzi was assigned a uni- 700

form prior between 0 and 1, and the auto-regressive coefficient 701

φ a uniform prior between -1 and 1. 702

Statistical implementation We implemented the models using 703

Hamiltonian Monte Carlo (HMC) as available in the Stan 704

framework (75). We ran 10 chains, each with 2000 iterations 705

following a burn-in of 1000 iterations. After a thinning every 706

5 iterations, we obtained a total of 4000 iterations. Divergent 707
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transitions can happen during HMC and hamper safe inter-708

pretation of the output. Given the high number of models709

to be analysed, we kept models with divergent transitions,710

though only if at low rates (less than 2.5% of the iterations),711

increasing the adapt_delta parameter in Stan as needed to712

reach this threshold. Convergence was checked graphically,713

and using the potential scale reduction factor diagnostic (76).714

Effective sample size was kept above 200 for all parameters.715

Model selection The models were compared using a cross-716

validation procedure, namely approximate leave-one-out with717

Pareto smooth importance sampling (47) (LOO-PSIS). An718

information criterion can be derived from LOO-PSIS, named719

LOOIC, which was used to compare models. LOOIC is akin720

to WAIC (but does not rely on asymptotic assumptions(47)),721

and can be interpreted in a similar fashion as other informa-722

tion criteria such as AIC or BIC. In order to compute the723

overall statistical support, across datasets, for each model in724

Table 1, we derived “weights of evidence” inspired by Akaike725

weights used in model averaging (48), but based on LOOIC.726

The relative support for model i across datasets was defined727

as728

wi = 1
Nd

Nd∑
j=1

exp(−∆i,j/2)∑7
k=1 exp(−∆k,j/2)

, [6]729

where ∆i,j is the difference between the LOOIC of the best730

model and that of the focal model i (k iterates over the seven731

models), both for dataset j, and Nd is the total number of732

datasets as defined above. We repeated the same analysis733

using only birds and then only mammals datasets, adjusting734

Nd in Equation 6 as needed.735

This procedure of using weights of evidence was preferred736

over a simple computation of the proportion of datasets for737

which each model was the best model because the latter would738

necessarily be less precise. For instance, when several mod-739

els (say, all those with fluctuating selection) have very similar740

LOOIC scores, but differ substantially from the remainder of741

the models for a given dataset (see e.g. Cca1 in Table S2), it742

is not particularly meaningful to only select the slightly best743

model; instead we would like to measure how well each model744

is supported relative to all others. This is what wi does: it at-745

tributes a score to each model, reflecting the relative support746

the model offers to the data, compared to other models.747

Post-hoc analysis We computed the posterior distributions748

of the selection gradients βt using the HMC samples of all pa-749

rameters involved, to propagate uncertainty in these estimates750

toward the βt estimates. In order to do that while accounting751

for uncertainty in estimating z̄t for models with an optimum752

(see Equation 2), we implemented a Monte Carlo sampling753

of the mean phenotype in each year, assuming a normal sam-754

pling distribution of the mean. We thus used the Monte Carlo755

and HMC samples of z̄t, θt and ω2 to propagate uncertainty756

in estimates of βt. We then directly used estimates of βt757

to compute the mean selection gradient E(β) and its stan-758

dard deviation over the years σβ . Note that this strategy will759

cause a slight regression toward the mean, and thus a slight760

underestimation of σβ in general, but this is conservative with761

respect to the estimation of the prevalence and magnitude of762

fluctuating selection.763

In order to obtain “meta-estimates” (i.e. robust overall es-764

timates across all datasets, accounting for different uncertain-765

ties between datasets), we generated 100 tables (each com- 766

posed of one row for each dataset), drawing from the posterior 767

samples of E(θ), σθ, E(β), σβ and ω. We used the multiple 768

imputation framework of the R package brms (77) to perform 769

a mixed model analysis of each of these parameters using the 770

taxon (bird or mammal) as a fixed effect and species and pop- 771

ulation as random effects. We used the taxon-level intercepts 772

of such models as the meta-estimates, and report their poste- 773

rior median and 95% credible interval. For E(θ), σθ and ω, 774

we only used datasets with a majority statistical support for 775

optimum models, compared to directional models. 776

To study the influence of phenotype optimum tracking by 777

plastic responses at the individual level, we selected individu- 778

als that reproduced in two consecutive years, and computed 779

the difference in average phenology between years in this sub- 780

set (again, using Monte Carlo simulations to account for un- 781

certainty thereafter). We only retained datasets with at least 782

five individuals in common between consecutive years, for at 783

least 10 years in total, and with a majority statistical support 784

for an optimum. Although proper measurement of phenotypic 785

plasticity requires data about an environmental cue that in- 786

duces the plastic response, the phenotypic change caused by 787

plasticity (i.e. the plastic response) can be inferred accurately 788

without this information provided that other processes such as 789

ontogeny, habitat choice or senescence, can be ignored. This 790

assumption is generally a good approximation for phenologi- 791

cal traits, and was used for instance by (78) to estimate se- 792

lection on plasticity, even though there is some evidence for 793

senescence of reproductive phenology and its plasticity in the 794

wild ((79) for an example on blue tits). We then computed 795

the correlation between plastic changes in mean individual 796

phenotype and changes in optimum phenotype across years, 797

still accounting for uncertainty: to test for the significance 798

of an overall trend in these correlations, we sampled Monte 799

Carlo and HMC iterations amounting to the sample size of 800

each dataset, and did so 100 times. We then inferred the 801

meta-estimate of the correlation using a mixed model in brms, 802

as described above, using taxon as a fixed effect and study ID 803

as a random effect. 804

Data availability Estimates, code and data to reproduce 805

the analysis can be found online at: https://github.com/ 806

devillemereuil/MetaFluctSel. 807
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